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PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS

TECHNICAL CHALLENGES

RUSSIAN AJAX HYPERSONIC FLIGHT VEHICLE (1994)
TECHNICAL CHALLENGES
• Uniform Plasma Generation
• Power Required; System Impact
• High Re, Q Environment
• Measurement/Modeling

Directional energy
transfer systems

• Measurement/Modeling

Plasma Shock Strength
PAYOFFS
• Drag Reduction
• Thermal Management
• Flight ControlPropellant
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Reduction

• Size, Weight reduction
• Few Moving Parts
• Power generation
• Ignition/Combustion

Kinetic energy of air stream

Air Intake

Nozzle
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MGD generator

MGD accelerator
Combustion chamber

Th tMHD Fl C t l/ Plasma Assisted
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EnhancementMagnetoplasmochemical engine ThrustMHD Flow Control/
Energy Extraction

Plasma-Assisted
Ignition And Combustion



PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS

THEME OBJECTIVE: Understand, Predict, And Control
Weakly Ionized Flows To Revolutionize The PerformanceWeakly Ionized Flows To Revolutionize The Performance
Of Aerospace Vehicles
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PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS

RESEARCH
• Aerodynamic Drag Reduction
• MHD Flow Control
• Glow Discharge Flow Control
• Plasma Generation

Ignition / Combustion• Ignition / Combustion 
Enhancement

AFOSR PROGRAM MANAGER TEAM
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John Schmisseur
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PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS
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PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS
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PLASMA DYNAMICS FOR 
AEROSPACE APPLICATIONS

PAYOFFS
Hypersonic

Localized 
Plasma
Discharges

Drag Reduction

Plasma
MHD Flow
Control

Discharges

Ignition
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PLASMA-ENHANCED COMBUSTION

2009 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE2009 MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE

CHEMICAL ENERGY ENHANCEMENT BY NONEQUILIBRIUM
PLASMA SPECIES

The Legacy
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PLASMA IGNITION

PLASMA IGNITION ALTERNATIVES

Glow Discharge Streamer Discharge Nanosecond DischargeGlow Discharge                      Streamer Discharge               Nanosecond Discharge
(Adamovich/Ohio State)                (Gundersen/USC)                   (Starikovskii/MIPT)

dV/dt = 0                                   dV/dt > 1 kV/s                            dV/dt > 1 kV/ns
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PLASMA IGNITION

SHOCK TUBE EXPERIMENTS DEMONSTRATE IGNITION
DELAY REDUCTION BY FAST IONIZATION WAVES
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• Results Validate Previous Model Predictions
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• Nanosecond Corona Discharge at 0.2 MPa Pressure And By Volume Nanosecond
Discharge At 0 05 MPa Pressure
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Discharge At 0.05 MPa Pressure

• Ignition Not Possible Without Fast Ionization Wave At 0.05 MPa Pressure

Starikovskii/MIPT



PLASMA IGNITION

PLASMA STREAMER DISCHARGES MODELED
Pro ides Initiali ation For Calc lations Of Plasma Enhanced Comb stion

Emission Contours As Functions Of Pressure

Bar

• Provides Initialization For Calculations Of Plasma-Enhanced Combustion

Anode Cathode
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Image
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• Modeling Based On Solving Transport Equations For Primary
And Secondary Electrons

• Experimental Validation Through Measurements Of Electric 

11

Field Strength For Streamer Discharges In Oxygen-Nitrogen
Gas Mixtures

Starikovskii/MIPT



PLASMA-ENHANCED COMBUSTION

100% INCREASE IN DIFFUSION FLAME QUENCH VELOCITY
GRADIENT REALIZED WITH GLIDING ARC DISCHARGE

22 0 90 W Plasma Power
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• Means To Stabilize Combustion In Scramjets
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• Gliding Discharge Initiated By Helical Inner Electrode And Stabilized Near The
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Quenching Limit By Field From A 0.15 Tesla Magnet, Producing 20-50 Hz Rotation

• Plasma-Based Thermal Addition Found To Be Negligible, Implying Non-Thermal
Plasma Stabilization

Ju/Princeton



COMBUSTION AND DIAGNOSTICSCOMBUSTION AND DIAGNOSTICS

QUESTIONS?
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